The paper describes the MetroPT data set, an outcome of a Predictive Maintenance project with an urban metro public transportation service in Porto, Portugal. The data was collected between 2020 and 2022 that aimed to develop machine learning methods for online anomaly detection and failure prediction. By capturing several analogic sensor signals (pressure, temperature, current consumption), digital signals (control signals, discrete signals), and GPS information (latitude, longitude, and speed), we provide a framework that can be easily used and developed for the new machine learning methods. We believe this dataset contains some interesting characteristics and can be a good benchmark for predictive maintenance models.
翻译:本文描述了MetroPT数据集,这是葡萄牙波尔图城市公共交通服务城市地铁运输服务的预测维护项目的成果。该数据是在2020至2022年间收集的,旨在开发用于在线异常现象探测和故障预测的机器学习方法。通过捕捉若干模拟传感器信号(压力、温度、当前消耗量)、数字信号(控制信号、离散信号)和全球定位系统信息(纬度、经度和速度),我们提供了一个可用于新机器学习方法的易于使用和开发的框架。我们认为该数据集包含一些有趣的特征,可以成为预测维护模型的良好基准。