The existing randomized algorithms need an initial estimation of the tubal rank to compute a tensor singular value decomposition. This paper proposes a new randomized fixedprecision algorithm which for a given third-order tensor and a prescribed approximation error bound, automatically finds an optimal tubal rank and the corresponding low tubal rank approximation. The algorithm is based on the random projection technique and equipped with the power iteration method for achieving a better accuracy. We conduct simulations on synthetic and real-world datasets to show the efficiency and performance of the proposed algorithm.
翻译:本文提出了一种新的随机化固定精度算法,针对给定的三阶张量和预定的逼近误差界限,自动找到最佳张量秩及相应的低秩逼近解。该算法基于随机投影技术,并配备了幂迭代方法以实现更高的精度。我们在合成和真实世界数据集上进行了模拟,以展示所提出算法的有效性和性能。