The so-called block-term decomposition (BTD) tensor model, especially in its rank-$(L_r,L_r,1)$ version, has been recently receiving increasing attention due to its enhanced ability of representing systems and signals that are composed of \emph{blocks} of rank higher than one, a scenario encountered in numerous and diverse applications. Uniqueness conditions and fitting methods have thus been thoroughly studied. Nevertheless, the challenging problem of estimating the BTD model structure, namely the number of block terms, $R$, and their individual ranks, $L_r$, has only recently started to attract significant attention, mainly through regularization-based approaches which entail the need to tune the regularization parameter(s). In this work, we build on ideas of sparse Bayesian learning (SBL) and put forward a fully automated Bayesian approach. Through a suitably crafted multi-level \emph{hierarchical} probabilistic model, which gives rise to heavy-tailed prior distributions for the BTD factors, structured sparsity is \emph{jointly} imposed. Ranks are then estimated from the numbers of blocks ($R$) and columns ($L_r$) of non-negligible energy. Approximate posterior inference is implemented, within the variational inference framework. The resulting iterative algorithm completely avoids hyperparameter tuning, which is a significant defect of regularization-based methods. Alternative probabilistic models are also explored and the connections with their regularization-based counterparts are brought to light with the aid of the associated maximum a-posteriori (MAP) estimators. We report simulation results with both synthetic and real-word data, which demonstrate the merits of the proposed method in terms of both rank estimation and model fitting as compared to state-of-the-art relevant methods.


翻译:所谓的轮廓分解模型(BTD),特别是其名牌-美元(L_r,L_r,1美元)版本的轮廓分解模型最近受到越来越多的关注,因为其代表系统能力和信号的能力得到加强,这些系统和信号由排名高于一的\emph{blocks}构成,这是在众多和多种应用中遇到的一种假设。因此,对独特性条件和适当方法进行了透彻的研究。然而,估算BTD模型结构,即区块条件的数量、美元及其单级($L_r$),最近才开始引起人们的极大关注,主要是通过基于正规化的替代方法,这需要调整正规化参数。在这项工作中,我们利用稀疏的巴耶斯学习(SBL)理念,提出完全自动化的巴耶斯方法。通过一个适当的多级模型和结构模式,使得BTD因素的先前分布更加复杂,结构的扭曲性调整性(regrightalal-rlational roder) 数据是同时进行。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月3日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员