Non Fungible Tokens (NFTs) are digital assets that represent objects like art, videos, in-game items and music. They are traded online, often with cryptocurrency, and they are generally encoded as smart contracts on a blockchain. Media and public attention towards NFTs has exploded in 2021, when the NFT art market has experienced record sales while celebrated new star artists. However, little is known about the overall structure and evolution of the NFT market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs generating a total trading volume of 935 millions US dollars. Our data are obtained primarily from the Ethereum and WAX blockchains and cover the period between June 23, 2017 and April 27, 2021. First, we characterize the statistical properties of the market. Second, we build the network of interactions and show that traders have bursts of activity followed by inactive periods, and typically specialize on NFTs associated to similar objects. Third, we cluster objects associated to NFTs according to their visual features and show that NFTs within the same category tend to be visually homogeneous. Finally, we investigate the predictability of NFT sales. We use simple machine learning algorithms and find that prices can be best predicted by the sale history of the NFT collection, but also by some features describing the properties of the associated object (e.g., visual features of digital images). We anticipate that our analysis will be of interest to both researchers and practitioners and will spark further research on the NFT production, adoption and trading in different contexts.
翻译:不易变形的Tokens(NFTs)是代表艺术、视频、游戏物品和音乐等物品的数字资产。它们通常在网上交易,通常使用加密货币进行交易,通常被编码成链链条上的智能合同。2021年,当NFT艺术市场在庆祝新明星艺术家时经历了创纪录的销售时,媒体和公众对NFTs的注意力就爆发了。然而,对于NFT市场的总体结构和演变却知之甚少。在这里,我们分析有关470万个NFTs交易的610万个交易数据,其交易总额达935百万美元。我们的数据主要来自Ethereum和WAX连锁,数据主要是从Etheyerum和WAX连锁链中获取的,并覆盖了整个6月23日、2017年和2021年6月27日的智能合同期。首先,我们对NFT的统计特性进行了描述。第二,我们建立了互动网络,显示贸易商们在不活跃的时期里,通常专门研究与类似物品相关的NFTs相关的活动。第三,我们根据它们的视觉特征对NFTs的相关环境进行分类,显示,但在同一类别内的NFTs的销售中,我们也可以交易中的兴趣往往会是视觉上进行直观分析。最后我们用最精确的预测性分析。我们研究。我们研究。我们用最精确地研究。我们用数字的预测性地研究来研究。我们研究来研究。我们研究。我们用的是研究。 。