Motion prediction is important for intelligent driving systems, providing the future distributions of road agent behaviors and supporting various decision making tasks. Existing motion predictors are often optimized and evaluated via task-agnostic measures based on prediction accuracy. Such measures fail to account for the use of prediction in downstream tasks, and could result in sub-optimal task performance. We propose a task-informed motion prediction framework that jointly reasons about prediction accuracy and task utility, to better support downstream tasks through its predictions. The task utility function does not require the full task information, but rather a specification of the utility of the task, resulting in predictors that serve a wide range of downstream tasks. We demonstrate our framework on two use cases of task utilities, in the context of autonomous driving and parallel autonomy, and show the advantage of task-informed predictors over task-agnostic ones on the Waymo Open Motion dataset.
翻译:机动性预测对于智能驱动系统十分重要,它提供了道路物剂行为的未来分布,并支持各种决策任务。现有的机动性预测器往往通过基于预测准确性的任务不可测度措施加以优化和评价。这些措施未能说明下游任务预测的使用,可能导致任务业绩低于最佳水平。我们提出了一个任务知情的机动性预测框架,共同说明预测准确性和任务效用的理由,以便通过其预测更好地支持下游任务。任务效用功能并不要求提供全部任务信息,而是说明任务的效用,从而产生为一系列广泛的下游任务服务的预测器。我们展示了我们在自主驱动和平行自主情况下使用两个任务公用事业的框架,并展示了任务知情预测器在Waymo Open Motion数据集上比任务不可知性预测器的优势。