We study numerical integration of functions $f: \mathbb{R}^{s} \to \mathbb{R}$ with respect to a probability measure. By applying the corresponding inverse cumulative distribution function, the problem is transformed into integrating an induced function over the unit cube $(0,1)^{s}$. We introduce a new orthonormal system: \emph{order~2 localized Walsh functions}. These basis functions retain the approximation power of classical Walsh functions for twice-differentiable integrands while inheriting the spatial localization of Haar wavelets. Localization is crucial because the transformed integrand is typically unbounded at the boundary. We show that the worst-case quasi-Monte Carlo integration error decays like $\mathcal{O}(N^{-1/\lambda})$ for every $\lambda \in (1/2,1]$. As an application, we consider elliptic partial differential equations with a finite number of log-normal random coefficients and show that our error estimates remain valid for their stochastic Galerkin discretizations by applying a suitable importance sampling density.
翻译:我们研究函数$f: \mathbb{R}^{s} \to \mathbb{R}$相对于概率测度的数值积分问题。通过应用相应的逆累积分布函数,该问题被转化为在单位立方体$(0,1)^{s}$上对诱导函数进行积分。我们引入了一种新的正交规范系统:\emph{二阶局部化沃尔什函数}。这些基函数在保持对二阶可积被积函数经典沃尔什函数逼近能力的同时,继承了哈尔小波的空间局部化特性。局部化至关重要,因为变换后的被积函数通常在边界处无界。我们证明,对于每个$\lambda \in (1/2,1]$,最坏情况下的拟蒙特卡洛积分误差以$\mathcal{O}(N^{-1/\lambda})$的速度衰减。作为应用,我们考虑具有有限个对数正态随机系数的椭圆偏微分方程,并通过应用适当的重要性采样密度,证明我们的误差估计对其随机伽辽金离散化仍然有效。