Context: Manual qualitative data analysis is time-intensive and can compromise validity and replicability, affecting analysis design, implementation, and reporting. Large Language Models (LLMs) enable human-bot collaboration in Software Engineering (SE), but their potential for qualitative data analysis in SE remains largely unexplored. Objective: The objective of this study is to design and develop an LLM-based multi-agent system that synergizes human decision support with AI to automate various qualitative data analysis approaches. Methods: We used LLM-based multi-agents systems to assist the qualitative data analysis process, deploying 27 agents, each responsible for a specific task, such as text summarization, initial code generation, and extracting themes and patterns. Results: The main findings are: (1) the LLM-based multi-agent system accelerates the qualitative data analysis process, (2) the system effectively automates tasks such as text summarization, initial code generation, and theme extraction, and (3) the publicly accessible code facilitates validation and further evaluation. Conclusion: The proposed LLM-based multi-agent system automates qualitative data analysis process, creating opportunities for researchers and practitioners. Future improvements focus on enhancing multilingual performance and integrating continuous expert feedback. The source code of proposed system and system details can be found here: https://github.com/GPT-Laboratory/Qualitative-Analysis-with-an-LLM-Based-Agentts
翻译:背景:人工定性数据分析耗时且可能损害有效性与可复现性,影响分析设计、实施与报告。大型语言模型(LLMs)使人类与机器在软件工程(SE)中的协作成为可能,但其在SE领域进行定性数据分析的潜力仍未得到充分探索。目标:本研究旨在设计与开发一种基于LLM的多智能体系统,将人类决策支持与人工智能相结合,以自动化多种定性数据分析方法。方法:我们采用基于LLM的多智能体系统辅助定性数据分析过程,部署了27个智能体,每个智能体负责特定任务,如文本摘要、初始代码生成以及主题与模式提取。结果:主要发现包括:(1)基于LLM的多智能体系统加速了定性数据分析过程;(2)该系统能有效自动化文本摘要、初始代码生成和主题提取等任务;(3)公开可访问的代码便于验证与进一步评估。结论:所提出的基于LLM的多智能体系统实现了定性数据分析过程的自动化,为研究人员与实践者创造了新机遇。未来改进将侧重于提升多语言性能及整合持续专家反馈。系统源代码与详细说明可在此处获取:https://github.com/GPT-Laboratory/Qualitative-Analysis-with-an-LLM-Based-Agentts