The rapid growth of mobile banking (m-banking), especially after the COVID-19 pandemic, has reshaped the financial sector. This study analyzes consumer reviews of m-banking apps from five major Canadian banks, collected from Google Play and iOS App stores. Sentiment analysis and topic modeling classify reviews as positive, neutral, or negative, highlighting user preferences and areas for improvement. Data pre-processing was performed with NLTK, a Python language processing tool, and topic modeling used Latent Dirichlet Allocation (LDA). Sentiment analysis compared methods, with Long Short-Term Memory (LSTM) achieving 82\% accuracy for iOS reviews and Multinomial Naive Bayes 77\% for Google Play. Positive reviews praised usability, reliability, and features, while negative reviews identified login issues, glitches, and dissatisfaction with updates.This is the first study to analyze both iOS and Google Play m-banking app reviews, offering insights into app strengths and weaknesses. Findings underscore the importance of user-friendly designs, stable updates, and better customer service. Advanced text analytics provide actionable recommendations for improving user satisfaction and experience.


翻译:暂无翻译

0
下载
关闭预览

相关内容

iOS 是苹果公司为其移动产品开发的操作系统。它主要给 iPhone、iPod touch、iPad 以及 Apple TV 使用。原本这个系统名为 iPhone OS,直到2010年6月7日 WWDC 大会上宣布改名为 iOS。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员