In this paper we describe an approach to semi-automatically create a labelled dataset for semantic segmentation of urban street-level point clouds. We use data fusion techniques using public data sources such as elevation data and large-scale topographical maps to automatically label parts of the point cloud, after which only limited human effort is needed to check the results and make amendments where needed. This drastically limits the time needed to create a labelled dataset that is extensive enough to train deep semantic segmentation models. We apply our method to point clouds of the Amsterdam region, and successfully train a RandLA-Net semantic segmentation model on the labelled dataset. These results demonstrate the potential of smart data fusion and semantic segmentation for the future of smart city planning and management.


翻译:在本文中,我们描述了一种半自动创建城市街道点云的语义分解标记数据集的方法。我们使用诸如海拔数据和大比例地形图等公共数据源的数据聚合技术,自动标出点云部分的标签,此后只需要有限的人力来检查结果并在必要时修改。这极大地限制了创建贴有标签的数据集所需的时间,该数据集足够广泛,足以培训深层次语义分解模型。我们运用了我们的方法来定位阿姆斯特丹地区的云,并成功地在标定数据集上培训了RandLA-Net语义分解模型。这些结果表明,智能数据混合和语义分解对于未来的智能城市规划和管理具有潜力。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【图与几何深度学习】Graph and geometric deep learning,49页ppt
3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
12+阅读 · 2021年6月21日
Review: deep learning on 3D point clouds
Arxiv
5+阅读 · 2020年1月17日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员