Marginal structural models are a popular tool for investigating the effects of time-varying treatments, but they require an assumption of no unobserved confounders between the treatment and outcome. With observational data, this assumption may be difficult to maintain, and in studies with panel data, many researchers use fixed effects models to purge the data of time-constant unmeasured confounding. Unfortunately, traditional linear fixed effects models are not suitable for estimating the effects of time-varying treatments, since they can only estimate lagged effects under implausible assumptions. To resolve this tension, we a propose a novel inverse probability of treatment weighting estimator with propensity-score fixed effects to adjust for time-constant unmeasured confounding in marginal structural models of fixed-length treatment histories. We show that these estimators are consistent and asymptotically normal when the number of units and time periods grow at a similar rate. Unlike traditional fixed effect models, this approach works even when the outcome is only measured at a single point in time as is common in marginal structural models. We apply these methods to estimating the effect of negative advertising on the electoral success of candidates for statewide offices in the United States.


翻译:不幸的是,传统的线性固定效应模型不适于估计时间变化治疗的效果,因为它们只能根据难以置信的假设估计滞后效应。为了解决这一紧张状况,我们建议一种新型的相反的治疗概率,即带有偏向性核心固定效应的估量器,以适应时间不变的固定治疗历史边际结构模型,我们采用这些估算器来估计负面选举结果的效果。我们用这些方法来估计选举候选人的负面效果。我们用这些方法来估计选举候选人的负面效果。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年3月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
1+阅读 · 2021年6月23日
Arxiv
0+阅读 · 2021年6月22日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年3月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员