Online abuse is becoming an increasingly prevalent issue in modern-day society, with 41 percent of Americans having experienced online harassment in some capacity in 2021. People who identify as women, in particular, can be subjected to a wide range of abusive behavior online, with gender-specific experiences cited broadly in recent literature across fields such as blogging, politics, and journalism. In response to this rise in abusive content, platforms have been found to largely employ "individualistic moderation" approaches, aiming to protect users from harmful content through the screening and management of singular interactions or accounts. Yet, previous work performed by the author of this paper has shown that in the cases of women in particular, these approaches can often be ineffective; failing to protect users from multi-dimensional abuse spanning prolonged time periods, different platforms, and varying interaction types. In recognition of its increasing complexity, platforms are beginning to outsource content moderation to users in a new and decentralized approach. The goal of this research is to examine the feasibility of using multidimensional abuse indicators in a Twitter-based moderation algorithm aiming to protect women from female-targeted online abuse. This research outlines three indicators of multidimensional abuse, explores how these indicators can be extracted as features from Twitter data, and proposes a technical framework for deploying an end-to-end moderation algorithm using these features.


翻译:2021年,41%的美国人以某种身份经历了在线骚扰。 特别是女性身份的人,在网上可能遭受广泛的虐待行为。 在最近博客、政治和新闻等领域的文献中广泛引用了与性别有关的经验。 为了应对这种滥用内容的增加,人们发现平台基本上采用“个人温和”方法,目的是通过筛选和管理单一互动或账户来保护用户免受有害内容的伤害。然而,本文作者以前的工作表明,在妇女方面,这些方法往往无效;未能保护用户免受跨越长期、不同平台和不同互动类型的多层面虐待;认识到其日益复杂,平台开始以新的分散方式将内容温和外包给用户。这项研究的目的是研究在基于推特的温和算法中使用多层面虐待指标的可行性,目的是保护妇女不受女性针对女性的在线虐待。本研究报告概述了三个多层面虐待指标,探索如何利用这些指标从Twitter中解析出一个节制的功能,并提议利用这些技术方略模型来利用这些技术方略的算法框架。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员