Box score statistics are the baseline measures of performance for National Collegiate Athletic Association (NCAA) basketball. Between the 2011-2012 and 2015-2016 seasons, NCAA teams performed better at home compared to on the road in nearly all box score statistics across both genders and all three divisions. Using box score data from over 100,000 games spanning the three divisions for both women and men, we examine the factors underlying this discrepancy. The prevalence of neutral location games in the NCAA provides an additional angle through which to examine the gaps in box score statistic performance, which we believe has been underutilized in existing literature. We also estimate a regression model to quantify the home court advantages for box score statistics after controlling for other factors such as number of possessions, and team strength. Additionally, we examine the biases of scorekeepers and referees. We present evidence that scorekeepers tend to have greater home team biases when observing men compared to women, higher divisions compared to lower divisions, and stronger teams compared to weaker teams. Finally, we present statistically significant results indicating referee decisions are impacted by attendance, with larger crowds resulting in greater bias in favor of the home team.


翻译:在2011-2012年和2015-2016年赛季期间,全国残疾人协会团队在家里的表现优于在道路上的表现,几乎所有男女和所有三个司的全方位得分统计都是如此。利用跨越三个司的10万多场比赛的方框得分数据,我们审视了造成这一差异的因素。全国残疾人协会中中立地点游戏的普及性为检查框分数统计业绩差距提供了另一个角度,我们认为现有文献对此没有充分利用。我们还估算了一个回归模型,用以量化家庭法院在控制财产数量和团队实力等其他因素之后对箱分数统计的优势。此外,我们研究了记分员和裁判员的偏向。我们提出的证据表明,计分员在观察男性与女性相比、较高分数与较低分数相比、以及较强的队与较弱的队相比,对家庭队的偏向往往更大。最后,我们提出了具有统计意义的结果,表明上述决定受到出席率的影响,因为更多的人群对家庭队的偏向。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
45+阅读 · 2019年12月20日
Adversarial Metric Attack for Person Re-identification
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员