Parameter-efficient transfer learning (PETL) based on large-scale pre-trained foundation models has achieved great success in various downstream applications. Existing tuning methods, such as prompt, prefix, and adapter, perform task-specific lightweight adjustments to different parts of the original architecture. However, they take effect on only some parts of the pre-trained models, i.e., only the feed-forward layers or the self-attention layers, which leaves the remaining frozen structures unable to adapt to the data distributions of downstream tasks. Further, the existing structures are strongly coupled with the Transformers, hindering parameter-efficient deployment as well as the design flexibility for new approaches. In this paper, we revisit the design paradigm of PETL and derive a unified framework U-Tuning for parameter-efficient transfer learning, which is composed of an operation with frozen parameters and a unified tuner that adapts the operation for downstream applications. The U-Tuning framework can simultaneously encompass existing methods and derive new approaches for parameter-efficient transfer learning, which prove to achieve on-par or better performances on CIFAR-100 and FGVC datasets when compared with existing PETL methods.


翻译:现有调试方法,如快速、前置和适配器,对原始结构的不同部分进行任务特有的轻量调整,但仅对预选模式的某些部分生效,即仅对进料前推进层或自留层生效,使其余的冷冻结构无法适应下游任务的数据分布。此外,现有结构与变压器紧密结合,妨碍了参数效率的部署和新方法的设计灵活性。在本文件中,我们重新审视了PETL的设计范式,并为参数效率转让学习制定了统一的框架UTuning,该框架由使用冻结参数的操作和统一调控器组成,以适应下游应用的操作。U-Turning框架可以同时包括现有方法,并得出参数效率转让学习的新办法,这证明在CIFAR-100和FGVC数据设置上,与现有的PETL方法相比,可以实现平行或更好的性能。</s>

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年8月25日
Arxiv
23+阅读 · 2020年9月16日
Arxiv
13+阅读 · 2020年4月12日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员