Popular approximate membership query structures such as Bloom filters and cuckoo filters are widely used in databases, security, and networking. These structures support two operations -- insert and lookup; lookup always returns true on elements inserted into the structure, while it returns true with some probability $\varepsilon \ll 1$ on elements not inserted into the structure. These latter elements are called false positives. Compensatory for these false positives, filters can be much smaller than hash tables that represent the same set. However, unlike hash tables, cuckoo filters and Bloom filters must be initialized with the intended number of inserts to be performed, and cannot grow larger -- inserts beyond this number may fail or increase the false positive probability. This paper presents designs and implementations of filters than can grow without inserts failing and without increasing the false positive probability, even if the filters are created with a small initial size. The resulting code is open source and available for general use.


翻译:Bloom 过滤器和 cuckoo 过滤器等广受欢迎的成员查询结构在数据库、安全和网络中广泛使用。这些结构支持两种操作 -- -- 插入和查看;查找总是对插入结构的元素真实返回,而对于未插入结构的元素则返回真实,但可能性为$\varepsilon\ll 1美元。这些元素被称为假正数。对这些假正数的补偿,过滤器可能比代表同一组的散列表要小得多。然而,与散列表格不同,必须先用预想的插入数来初始化 cuckoo 过滤器和 Bloom 过滤器,且不能扩大 -- -- 超过此数的插入可能失败或增加错误正概率。本文显示过滤器的设计和实施比在不插入失败和不增加假正概率的情况下增长的长得更多,即使过滤器创建的初始大小较小。因此生成的代码是开放源,可供一般使用。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
5+阅读 · 2018年7月19日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员