This paper is intended to solve the nonconvex $\ell_{p}$-ball constrained nonlinear optimization problems. An iteratively reweighted method is proposed, which solves a sequence of weighted $\ell_{1}$-ball projection subproblems. At each iteration, the next iterate is obtained by moving along the negative gradient with a stepsize and then projecting the resulted point onto the weighted $\ell_{1}$ ball to approximate the $\ell_{p}$ ball. Specifically, if the current iterate is in the interior of the feasible set, then the weighted $\ell_{1}$ ball is formed by linearizing the $\ell_{p}$ norm at the current iterate. If the current iterate is on the boundary of the feasible set, then the weighted $\ell_{1}$ ball is formed differently by keeping those zero components in the current iterate still zero. In our analysis, we prove that the generated iterates converge to a first-order stationary point. Numerical experiments demonstrate the effectiveness of the proposed method.


翻译:本文旨在解决非convex$@ ell ⁇ p} $ ball 限制的非线性优化问题。 提议了一个迭代再加权法, 解决一个加权 $ell\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\B} $球子问题。 在每次迭代中, 下一个迭代是沿着负梯度的梯度移动获得的。 在每迭代中, 以一个阶梯, 然后将结果点投射到加权的 $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
0+阅读 · 2021年5月31日
Arxiv
0+阅读 · 2021年5月28日
VIP会员
Top
微信扫码咨询专知VIP会员