The objective of this paper is to assess the quality of explanation heatmaps for image classification tasks. To assess the quality of explainability methods, we approach the task through the lens of accuracy and stability. In this work, we make the following contributions. Firstly, we introduce the Weighting Game, which measures how much of a class-guided explanation is contained within the correct class' segmentation mask. Secondly, we introduce a metric for explanation stability, using zooming/panning transformations to measure differences between saliency maps with similar contents. Quantitative experiments are produced, using these new metrics, to evaluate the quality of explanations provided by commonly used CAM methods. The quality of explanations is also contrasted between different model architectures, with findings highlighting the need to consider model architecture when choosing an explainability method.
翻译:本文的目的是评估图像分类任务解释色谱的质量。 为了评估可解释性方法的质量, 我们通过精确性和稳定性的透镜来看待任务。 在这项工作中, 我们做出以下贡献。 首先, 我们引入了“ 加权游戏 ”, 以测量正确的分类分解掩码中包含的等级指导解释的多少。 其次, 我们引入了解释稳定性的衡量标准, 使用缩放/ 宽幅转换来衡量内容相似的突出地图之间的差异。 利用这些新指标, 进行了定量实验, 以评价常用的 CAM 方法所提供的解释的质量。 解释的质量也与不同的模型结构不同, 其结果突出表明在选择解释性方法时需要考虑模型结构 。