We present a new approach to carry out non-adiabatic molecular dynamics to study the carrier mobility in an organic monolayer. This approach allows the calculation of a 4802 atom system for 825 fs in about three hours using 51,744 computer cores while maintaining a plane wave pseudopotential density functional theory level accuracy for the Hamiltonian. Our simulation on a pentathiophene butyric acid monolayer reveals a previously unknown new mechanism for the carrier transport in such systems: the hole wave functions are localized by thermo fluctuation induced disorder, while its transport is via charge transfer during state energy crossing. The simulation also shows that the system is not in thermo dynamic equilibrium in terms of adiabatic state populations according to Boltzmann distribution. Our simulation is achieved by introducing a linear time dependence approximation of the Hamiltonian within a fs time interval, and by using the charge patching method to yield the Hamiltonian, and overlapping fragment method to diagonalize the Hamiltonian matrix.
翻译:我们提出了一个新的方法,用于在有机单层中研究载体的移动性。这个方法可以使用51,744个计算机核心在大约三个小时内计算825个原子在825英尺时的4802个原子系统,同时保持汉密尔顿人的飞机波伪潜在密度功能理论精确度。我们在五硫苯丁酸单层的模拟中揭示了在这种系统中载体运输的一个新机制:洞波功能通过热波动诱发的疾病而本地化,而其运输则是通过国家能源过境点的收费转移。这个模拟还表明,根据波尔兹曼的分布,该系统在对异状状态人群的温度动态平衡方面并不处于温度平衡状态。我们的模拟是通过在一段时间内引入汉密尔顿人的线性时间依赖近距离,以及使用电源补法产生汉密尔顿母体,以及重复的碎片法使汉密尔顿母体分解。