Local detection of magnetic fields is crucial for characterizing nano- and micro-materials and has been implemented using various scanning techniques or even diamond quantum sensors. Diamond nanoparticles (nanodiamonds) offer an attractive opportunity to chieve high spatial resolution because they can easily be close to the target within a few 10 nm simply by attaching them to its surface. A physical model for such a randomly oriented nanodiamond ensemble (NDE) is available, but the complexity of actual experimental conditions still limits the accuracy of deducing magnetic fields. Here, we demonstrate magnetic field imaging with high accuracy of 1.8 $\mu$T combining NDE and machine learning without any physical models. We also discover the field direction dependence of the NDE signal, suggesting the potential application for vector magnetometry and improvement of the existing model. Our method further enriches the performance of NDE to achieve the accuracy to visualize mesoscopic current and magnetism in atomic-layer materials and to expand the applicability in arbitrarily shaped materials, including living organisms. This achievement will bridge machine learning and quantum sensing for accurate measurements.
翻译:磁场的局部探测对于纳米和微材料的定性至关重要,并且已经使用各种扫描技术甚至钻石量子传感器加以实施。 钻石纳米粒子(nanodiamonds)提供了一个极好的机会,可以感应高空间分辨率,因为这些粒子只要将其附在表面就可以很容易地在10海里之内接近目标,只要将其附在表面即可。一个随机导向纳米钻石共聚体(NDE)的物理模型已经存在,但实际实验条件的复杂性仍然限制了减压磁场的准确性。在这里,我们展示磁场成像的高度精度为1.8 $mu$T,结合NDE和没有物理模型的机器学习。我们还发现了NDE信号的实地依赖性,建议对矢量器磁度进行潜在应用并改进现有模型。我们的方法进一步丰富了NDE的性能,以便实现将表面材料中的流和磁性流的直观化,并扩大包括活生物体在内的任意成型材料的可应用性。这一成就将连接机器学习和量子感测以精确测量。