In this paper, we investigate the computation task with its sub-tasks subjected to sequential dependency for a mobile edge computing (MEC) wireless system, under both slow and fast fading channels. To minimize energy consumption per mobile device while limiting task processing delay, offloading strategy (that determines which sub-task will be offloaded), communication resource (in terms of transmit power in every fading block), and computation resource (in terms of CPU frequency for local computing) are optimized jointly. In slow fading channel, with offloading decision given, the optimization of the rest variables turns to be a non-convex problem. Through transforming the non-convex problem to be a convex one, golden search method is only required to find the optimal solution by decomposing the investigated problem into two levels. Then the optimal offloading decision can be easily selected. In fast fading channel, online policy depending on instant channel state is desired and the optimal solution is derived. In addition, it is proved the derived online policy will converge to an offline policy when channel coherence time is short enough, which can help to save computation complexity. Numerical and simulation results verify the effectiveness and correctness of our proposed strategies and analysis.
翻译:在本文中, 我们通过慢速和快速淡化的频道, 调查其亚任务在移动边缘计算( MEC) 无线系统的连续依赖下, 在慢速和快速淡化的频道下, 其子任务 的计算任务 。 为了在限制任务处理延迟的同时最大限度地减少每个移动设备的能源消耗, 只需通过将所调查的问题分解为两个级别, 卸载战略( 即决定卸载哪个子任务), 通讯资源( 在每个淡化区块中的传输能力) ) 和计算资源( 本地计算中的 CPU 频率 ) 的优化 。 在缓慢淡化的频道中, 给出了卸载决定, 其余变量的优化将变成一个非convex 问题。 通过将非convex 问题转换为一个, 只需要金色搜索方法就可以找到最佳解决方案, 将所调查的问题解析成两个级别 。 然后, 最佳卸载决定可以很容易选择 。 在快速淡化的频道中, 需要根据即时, 生成的在线政策, 并得出最佳解决方案 。 此外,, 所得出的在线政策将归为离线政策 政策, 当频道的一致性时间足够短时,, 有助于保存计算复杂性 。