Large Language Model-based Multi-Agent Systems (MASs) have emerged as a powerful paradigm for tackling complex tasks through collaborative intelligence. However, the topology of these systems--how agents in MASs should be configured, connected, and coordinated--remains largely unexplored. In this position paper, we call for a paradigm shift toward \emph{topology-aware MASs} that explicitly model and dynamically optimize the structure of inter-agent interactions. We identify three fundamental components--agents, communication links, and overall topology--that collectively determine the system's adaptability, efficiency, robustness, and fairness. To operationalize this vision, we introduce a systematic three-stage framework: 1) agent selection, 2) structure profiling, and 3) topology synthesis. This framework not only provides a principled foundation for designing MASs but also opens new research frontiers across language modeling, reinforcement learning, graph learning, and generative modeling to ultimately unleash their full potential in complex real-world applications. We conclude by outlining key challenges and opportunities in MASs evaluation. We hope our framework and perspectives offer critical new insights in the era of agentic AI.
翻译:基于大语言模型的多智能体系统已成为通过协同智能处理复杂任务的重要范式。然而,这些系统的拓扑结构——即多智能体系统中智能体应如何配置、连接与协调——在很大程度上仍未得到充分探索。在本立场论文中,我们呼吁向显式建模并动态优化智能体间交互结构的“拓扑感知多智能体系统”进行范式转变。我们提出了决定系统适应性、效率、鲁棒性与公平性的三个基本构成要素:智能体、通信链路与整体拓扑结构。为实现这一愿景,我们提出了一个系统性的三阶段框架:1)智能体选择,2)结构画像,3)拓扑合成。该框架不仅为多智能体系统设计提供了原则性基础,同时开辟了语言建模、强化学习、图学习与生成建模等领域的新研究前沿,以最终释放其在复杂现实应用中的全部潜力。最后,我们概述了多智能体系统评估中的关键挑战与机遇。我们希望所提出的框架与视角能为智能体人工智能时代提供关键的新见解。