Regular model checking is an exploration technique for infinite state systems where state spaces are represented as regular languages and transition relations are expressed using rational relations over infinite (or finite) strings. We extend the regular model checking paradigm to permit the use of more powerful transition relations: the class of regular relations, of which the rational relations are a strict subset. We use the language of monadic second-order logic on infinite strings to specify such relations and adopt streaming string transducers (SSTs) as a suitable computational model. We introduce nondeterministic SSTs over infinite strings and show that they precisely capture the relations definable in MSO. We further explore theoretical properties of omega-NSSTs required to effectively carry out regular model checking. In particular, we establish that the regular type checking problem for omega-NSSTs is decidable in PSPACE. Since the post-image of a regular language under a regular relation may not be regular (or even context-free), approaches that iteratively compute the image can not be effectively carried out in this setting. Instead, we utilize the fact that regular relations are closed under composition, which, together with our decidability result, provides a foundation for regular model checking with regular relations.
翻译:常规模式检查是国家空间代表为常规语言的无限状态体系的一种探索技术,过渡关系则使用无限(或有限)字符串的合理关系来表达。我们扩展常规模式检查模式范式,允许使用更强大的过渡关系:正常关系类别,其合理关系是其中的严格子集。我们在无限字符串上使用月经二阶逻辑的语言来指定这种关系,并采用流字符串转换器(SSTs)作为合适的计算模型。我们引入了非决定性的SSTs,而不是无限字符串,并表明它们准确地反映了在MOSO中可以确定的关系。我们进一步探索了为有效进行定期模式检查所需的OMGA-NSSTs的理论属性。特别是,我们确定常规类型检查OMEGA-NSSTs问题在PACE中是可以消化的。由于常规关系下的常规语言后映射方式可能不是常规的(或甚至没有背景),因此迭代译SSTs无法在此环境中有效进行。我们利用定期的模型来核对关系,与常规的构成一起提供正常的基础。