Let a polyhedron $P$ be defined by one of the following ways: (i) $P = \{x \in R^n \colon A x \leq b\}$, where $A \in Z^{(n+k) \times n}$, $b \in Z^{(n+k)}$ and $rank\, A = n$; (ii) $P = \{x \in R_+^n \colon A x = b\}$, where $A \in Z^{k \times n}$, $b \in Z^{k}$ and $rank\, A = k$. And let all rank order minors of $A$ be bounded by $\Delta$ in absolute values. We show that the short rational generating function for the power series $$ \sum\limits_{m \in P \cap Z^n} x^m $$ can be computed with the arithmetic complexity $ O\left(T_{SNF}(d) \cdot d^{k} \cdot d^{\log_2 \Delta}\right), $ where $k$ and $\Delta$ are fixed, $d = \dim P$, and $T_{SNF}(m)$ is the complexity to compute the Smith Normal Form for $m \times m$ integer matrix. In particular, $d = n$ for the case (i) and $d = n-k$ for the case (ii). The simplest examples of polyhedra that meet conditions (i) or (ii) are the simplicies, the subset sum polytope and the knapsack or multidimensional knapsack polytopes. We apply these results to parametric polytopes, and show that the step polynomial representation of the function $c_P(y) = |P_{y} \cap Z^n|$, where $P_{y}$ is parametric polytope, can be computed by a polynomial time even in varying dimension if $P_{y}$ has a close structure to the cases (i) or (ii). As another consequence, we show that the coefficients $e_i(P,m)$ of the Ehrhart quasi-polynomial $$ \left| mP \cap Z^n\right| = \sum\limits_{j = 0}^n e_i(P,m)m^j $$ can be computed by a polynomial time algorithm for fixed $k$ and $\Delta$.


翻译:(一) 美元= 美元= 美元, 美元= 美元= 美元; 美元= 美元= 美元; 美元= 美元= 美元; 美元= 美元= 美元; 美元= 美元= 美元; 美元= 美元= 美元; 美元= 美元= 美元; 美元= 美元; 美元= 美元; 美元= 美元; 美元= 美元; 美元= 美元; 美元= 美元; 美元= 美元; 美元= 美元; 美元= 美元; 美元= 美元; 美元= 美元; 美元= 美元= 美元; 美元= 美元= 美元; 美元= 美元= 美元= 美元; 美元= 美元= 美元= 美元; 美元= 美元= = 美元; 美元= 美元= 美元= 美元= 美元; 美元= 美元= 美元= 美元= 美元= 美元= 美元; 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元=

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2019年11月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
0+阅读 · 2021年6月27日
Dimensionality Reduction for Sum-of-Distances Metric
Arxiv
0+阅读 · 2021年6月24日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员