In this work, we propose \texttt{TimeGrad}, an autoregressive model for multivariate probabilistic time series forecasting which samples from the data distribution at each time step by estimating its gradient. To this end, we use diffusion probabilistic models, a class of latent variable models closely connected to score matching and energy-based methods. Our model learns gradients by optimizing a variational bound on the data likelihood and at inference time converts white noise into a sample of the distribution of interest through a Markov chain using Langevin sampling. We demonstrate experimentally that the proposed autoregressive denoising diffusion model is the new state-of-the-art multivariate probabilistic forecasting method on real-world data sets with thousands of correlated dimensions. We hope that this method is a useful tool for practitioners and lays the foundation for future research in this area.
翻译:在这项工作中,我们提议了 \ textt{TimeGrad} 的自动递减性时间序列预测模型, 该模型通过估计其梯度从每个时段的数据分布中提取样本。 为此, 我们使用扩散性概率模型, 这是一种与得分匹配和以能源为基础的方法密切相关的潜在可变模型。 我们的模型通过优化数据可能性的变式约束和推论时间将白噪音转换成通过使用 Langevin 采样的Markov 链段进行的利益分配样本。 我们实验地证明, 拟议的自动递减性分散扩散模型是现实世界数据集中具有数千个相关维度的新型最新多变性预测方法。 我们希望, 这种方法能成为从业人员的有用工具, 为未来这一领域的研究奠定基础 。