Machine learning models are vulnerable to adversarial attacks. In this paper, we consider the scenario where a model is to be distributed to multiple users, among which a malicious user attempts to attack another user. The malicious user probes its copy of the model to search for adversarial samples and then presents the found samples to the victim's model in order to replicate the attack. We point out that by distributing different copies of the model to different users, we can mitigate the attack such that adversarial samples found on one copy would not work on another copy. We first observed that training a model with different randomness indeed mitigates such replication to certain degree. However, there is no guarantee and retraining is computationally expensive. Next, we propose a flexible parameter rewriting method that directly modifies the model's parameters. This method does not require additional training and is able to induce different sets of adversarial samples in different copies in a more controllable manner. Experimentation studies show that our approach can significantly mitigate the attacks while retaining high classification accuracy. From this study, we believe that there are many further directions worth exploring.


翻译:机器学习模型很容易受到对抗性攻击。 在本文中, 我们考虑将模型分发给多个用户的情景, 其中恶意用户试图攻击另一个用户。 恶意用户检测模型的副本, 搜索对抗性样品, 然后将发现的样本提交受害者模型, 以便复制攻击。 我们指出, 通过向不同用户分发不同版本的模型, 我们可以减轻攻击, 使一个副本上找到的对立样本不会对另一个副本起作用。 我们首先发现, 以不同随机性培训模型确实在某种程度上减轻了这种复制。 但是, 没有保证和再培训是计算成本高昂的。 接下来, 我们提出一个灵活的参数重写方法, 直接修改模型参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数参数。 这种方法不需要额外培训, 并且能够以更可控制的方式在不同版本中生成不同版本的对立样本。 实验研究表明, 我们的方法可以显著地减轻攻击, 同时保留高分类准确性。 我们相信, 还有很多值得探索的方向。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
已删除
将门创投
3+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】手把手深度学习模型部署指南
机器学习研究会
5+阅读 · 2018年1月23日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
Arxiv
7+阅读 · 2018年6月8日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关VIP内容
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】手把手深度学习模型部署指南
机器学习研究会
5+阅读 · 2018年1月23日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
相关论文
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
Arxiv
7+阅读 · 2018年6月8日
Arxiv
4+阅读 · 2015年3月20日
Top
微信扫码咨询专知VIP会员