Chronic wounds, including diabetic foot ulcers which affect up to one-third of people with diabetes, impose a substantial clinical and economic burden, with U.S. healthcare costs exceeding 25 billion dollars annually. Current wound assessment remains predominantly subjective, leading to inconsistent classification and delayed interventions. We present WoundNet-Ensemble, an Internet of Medical Things system leveraging a novel ensemble of three complementary deep learning architectures: ResNet-50, the self-supervised Vision Transformer DINOv2, and Swin Transformer, for automated classification of six clinically distinct wound types. Our system achieves 99.90 percent ensemble accuracy on a comprehensive dataset of 5,175 wound images spanning diabetic foot ulcers, pressure ulcers, venous ulcers, thermal burns, pilonidal sinus wounds, and fungating malignant tumors. The weighted fusion strategy demonstrates a 3.7 percent improvement over previous state-of-the-art methods. Furthermore, we implement a longitudinal wound healing tracker that computes healing rates, severity scores, and generates clinical alerts. This work demonstrates a robust, accurate, and clinically deployable tool for modernizing wound care through artificial intelligence, addressing critical needs in telemedicine and remote patient monitoring. The implementation and trained models will be made publicly available to support reproducibility.


翻译:慢性伤口(包括影响高达三分之一糖尿病患者的糖尿病足溃疡)带来了巨大的临床和经济负担,仅美国每年的医疗成本就超过250亿美元。目前的伤口评估仍主要依赖主观判断,导致分类不一致和干预延迟。本文提出了WoundNet-Ensemble,一种医疗物联网系统,它创新性地集成了三种互补的深度学习架构:ResNet-50、自监督视觉Transformer DINOv2以及Swin Transformer,用于对六种临床不同类型伤口进行自动分类。我们的系统在一个包含5,175张伤口图像的综合数据集上实现了99.90%的集成准确率,该数据集涵盖糖尿病足溃疡、压力性溃疡、静脉性溃疡、热烧伤、藏毛窦伤口和蕈状恶性瘤。加权融合策略相较先前最先进方法取得了3.7%的性能提升。此外,我们实现了一个纵向伤口愈合追踪器,用于计算愈合率、严重程度评分并生成临床警报。这项工作展示了一个稳健、准确且可临床部署的工具,通过人工智能实现伤口护理的现代化,满足了远程医疗和远程患者监测中的关键需求。系统实现及训练模型将公开提供,以支持可复现性。

0
下载
关闭预览

相关内容

AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
VIP会员
相关基金
Top
微信扫码咨询专知VIP会员