Inferring the causal effect of a treatment on an outcome in an observational study requires adjusting for observed baseline confounders to avoid bias. However, adjusting for all observed baseline covariates, when only a subset are confounders of the effect of interest, is known to yield potentially inefficient and unstable estimators of the treatment effect. Furthermore, it raises the risk of finite-sample bias and bias due to model misspecification. For these stated reasons, confounder (or covariate) selection is commonly used to determine a subset of the available covariates that is sufficient for confounding adjustment. In this article, we propose a confounder selection strategy that focuses on stable estimation of the treatment effect. In particular, when the propensity score model already includes covariates that are sufficient to adjust for confounding, then the addition of covariates that are associated with either treatment or outcome alone, but not both, should not systematically change the effect estimator. The proposal, therefore, entails first prioritizing covariates for inclusion in the propensity score model, then using a change-in-estimate approach to select the smallest adjustment set that yields a stable effect estimate. The ability of the proposal to correctly select confounders, and to ensure valid inference of the treatment effect following data-driven covariate selection, is assessed empirically and compared with existing methods using simulation studies. We demonstrate the procedure using three different publicly available datasets commonly used for causal inference.


翻译:对观测研究的结果进行处理的因果关系推断,需要调整观察到的基线混凝体,以避免偏差。然而,如果对所有观察到的基线共变体进行调整,只要一个子集是利息效应的混杂者,就可发现对处理效应的估算结果可能产生潜在低效和不稳定的估算结果。此外,由于模型的偏差,这增加了有限分布偏差和偏差的风险。由于上述所述原因,通常使用混混(或共变)选择来确定现有可调合物的一部分,足以调和调整。在本条中,我们建议采用一个重合者选择战略,侧重于对治疗效果的稳定估计。特别是当偏差分模型已经包括足以调整混和不稳定的估算结果的共变差因素时,由于模型的偏差或结果本身不同,因此不应系统地改变估计结果。因此,提议首先将现有可调和变量排列成适合调和调和调整模式,然后使用变更估算结果的方法,然后采用修改和估算结果,在选择最精确的估算结果时,采用最精确的估算方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2019年11月20日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月26日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
Top
微信扫码咨询专知VIP会员