Wi-Fi systems based on the IEEE 802.11 standards are the most popular wireless interfaces that use Listen Before Talk (LBT) method for channel access. The distinctive feature of a majority of LBT-based systems is that the transmitters use preambles that precede the data to allow the receivers to perform packet detection and carrier frequency offset (CFO) estimation. Preambles usually contain repetitions of training symbols with good correlation properties, while conventional digital receivers apply correlation-based methods for both packet detection and CFO estimation. However, in recent years, data-based machine learning methods are disrupting physical layer research. Promising results have been presented, in particular, in the domain of deep learning (DL)-based channel estimation. In this paper, we present a performance and complexity analysis of packet detection and CFO estimation using both the conventional and the DL-based approaches. The goal of the study is to investigate under which conditions the performance of the DL-based methods approach or even surpass the conventional methods, but also, under which conditions their performance is inferior. Focusing on the emerging IEEE 802.11ah standard, our investigation uses both the standard-based simulated environment, and a real-world testbed based on Software Defined Radios.


翻译:以IEEE 802.11 标准为基础的Wi-Fi系统是使用LEEE 802.11 访问频道的LBT(LBT)方法最受欢迎的无线界面,大多数LBT系统的独特特点是,发射机使用数据前的序言,使接收器能够进行包检测和载体频率抵消(CFO)估计;序言通常包含重复具有良好关联特性的培训符号,而传统数字接收器对包检测和CFO估计都采用基于相关性的方法;然而,近年来,基于数据的机器学习方法干扰了物理层研究;特别是在深层学习(DL)的频道估计领域,提出了有希望的结果;在本文件中,我们利用常规和基于DL的两种方法,对包检测和CFO估计进行业绩和复杂性分析;研究的目的是调查基于DL方法的性能条件,甚至超过常规方法的性能,但是在这种条件下,其性能也低于物理层研究。侧重于新兴的IEEEEE802.11 的IEE 802.11 光谱标准领域,我们的调查使用基于真实的模拟环境。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Arxiv
5+阅读 · 2021年4月21日
Anomalous Instance Detection in Deep Learning: A Survey
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Top
微信扫码咨询专知VIP会员