The doubly robust (DR) estimator, which consists of two nuisance parameters, the conditional mean outcome and the logging policy (the probability of choosing an action), is crucial in causal inference. This paper proposes a DR estimator for dependent samples obtained from adaptive experiments. To obtain an asymptotically normal semiparametric estimator from dependent samples with non-Donsker nuisance estimators, we propose adaptive-fitting as a variant of sample-splitting. We also report an empirical paradox that our proposed DR estimator tends to show better performances compared to other estimators utilizing the true logging policy. While a similar phenomenon is known for estimators with i.i.d. samples, traditional explanations based on asymptotic efficiency cannot elucidate our case with dependent samples. We confirm this hypothesis through simulation studies.


翻译:由两个骚扰参数、有条件平均结果和伐木政策(选择行动的可能性)组成的双倍强(DR)估测仪在因果推断中至关重要。本文件建议对从适应性实验中得来的依附样本使用DR估计仪。要从非唐斯克扰动估计仪的依附样本中获取一个无症状正常的半参数估测仪,我们建议将适应性适合作为样本分割的变体。我们还报告了一个经验悖论,即我们提议的DR估计仪与其他利用真正伐木政策的估测员相比,往往表现出更好的表现。虽然对使用i.i.d.样本的估测员来说,一种类似的现象是众所周知的,但基于非唐斯克扰效率的传统解释无法用依赖性样本来解释我们的案件。我们通过模拟研究来证实这一假设。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员