Researchers often represent relations in multi-variate correlational data using Gaussian graphical models, which require regularization to sparsify the models. Acknowledging that they often study the modular structure of the inferred network, we suggest integrating it in the cross-validation of the regularization strength to balance under- and overfitting. Using synthetic and real data, we show that this approach allows us to better recover and infer modular structure in noisy data compared with the graphical lasso, a standard approach using the Gaussian log-likelihood when cross-validating the regularization strength.
翻译:研究人员通常使用高斯图解模型来表示多变量关联数据中的关系,这需要对模型进行正则化以稀疏模型。我们建议将模块化结构集成到正则化强度的交叉验证中,以平衡过度和欠度拟合。使用合成数据和真实数据,我们发现这种方法可以与使用高斯对数似然在交叉验证正则化强度时的标准方法——图形套索法相比,更好地恢复和推断噪声数据中的模块化结构。