We consider a finite element method with symmetric stabilisation for the discretisation of the transient convection--diffusion equation. For the time-discretisation we consider either the second order backwards differentiation formula or the Crank-Nicolson method. Both the convection term and the associated stabilisation are treated explicitly using an extrapolated approximate solution. We prove stability of the method and the $\tau^2 + h^{p+{\frac12}}$ error estimates for the $L^2$-norm under either the standard hyperbolic CFL condition, when piecewise affine ($p=1$) approximation is used, or in the case of finite element approximation of order $p \ge 1$, a stronger, so-called $4/3$-CFL, i.e. $\tau \leq C h^{4/3}$. The theory is illustrated with some numerical examples.


翻译:我们考虑的是具有对称稳定法的有限元素方法,用于对瞬时对流对流反扩散方程式进行分解。 在时间分解时,我们考虑的是第二顺序向后偏差公式或Crank-Nicolson法。对流期和相关的稳定化都使用外推近似解决方案进行明确处理。我们证明这种方法的稳定性,以及在标准双曲式CFL条件下对$L2美元(p=1美元)的错误估计值($\tau2 + h ⁇ p ⁇ p ⁇ frac12+$),或者在使用整形折线折线($p=1美元)近似值时,或者在定点元素近似值($p\ge1美元,一种更强的、所谓的4/3美元CFL,即$\tau\leq Ch ⁇ 4/3美元)的情况下,该方法的稳定性和$$leq\leq Ch*4/3美元。 理论用一些数字例子加以说明。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月10日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员