The growing integration of mobile robots in shared workspaces requires efficient path planning and coordination between the agents, accounting for safety and productivity. In this work, we propose a digital model-based optimization framework for mobile manipulators in human-robot collaborative environments, in order to determine the sequence of robot base poses and the task scheduling for the robot. The complete problem is treated as black-box, and Particle Swarm Optimization (PSO) is employed to balance conflicting Key-Performance Indicators (KPIs). We demonstrate improvements in cycle time, task sequencing, and adaptation to human presence in a collaborative box-packing scenario.
翻译:随着移动机器人在共享工作空间中的日益普及,需要在考虑安全性和生产效率的前提下,实现智能体间高效的路径规划与协调。本文针对人机协作环境中的移动机械臂,提出了一种基于数字模型的优化框架,旨在确定机器人基座的位姿序列及其任务调度。该完整问题被视为黑箱,并采用粒子群优化算法来平衡相互冲突的关键性能指标。我们在一个协作装箱场景中,展示了该方法在周期时间、任务排序以及对人类存在的适应性方面的改进。