With Artificial Intelligence (AI) becoming ubiquitous in every application domain, the need for explanations is paramount to enhance transparency and trust among non-technical users. Despite the potential shown by Explainable AI (XAI) for enhancing understanding of complex AI systems, most XAI methods are designed for technical AI experts rather than non-technical consumers. Consequently, such explanations are overwhelmingly complex and seldom guide users in achieving their desired predicted outcomes. This paper presents ongoing research for crafting XAI systems tailored to guide users in achieving desired outcomes through improved human-AI interactions. This paper highlights the research objectives and methods, key takeaways and implications learned from user studies. It outlines open questions and challenges for enhanced human-AI collaboration, which the author aims to address in future work.
翻译:暂无翻译