This paper proposes a novel nature-inspired $\alpha$-fair hybrid precoding (NI-$\alpha$HP) technique for millimeter-wave multi-user massive multiple-input multiple-output systems. Unlike the existing HP literature, we propose to apply $\alpha$-fairness for maintaining various fairness expectations (e.g., sum-rate maximization, proportional fairness, max-min fairness, etc.). After developing the analog RF beamformer via slow time-varying angular information, the digital baseband (BB) precoder is designed via the reduced-dimensional effective channel matrix seen from the BB-stage. For the $\alpha$-fairness, we derive the optimal digital BB precoder expression with a set of parameters, where optimizing them is an NP-hard problem. Hence, we efficiently optimize the parameters in the digital BB precoder via five nature-inspired intelligent algorithms. Numerical results present that when the sum-rate maximization is the target, the proposed NI-$\alpha$HP technique greatly improves the sum-rate capacity and energy-efficiency performance compared to other benchmarks. Moreover, NI-$\alpha$HP supports different fairness expectations and reduces the rate gap among UEs by varying the fairness level ($\alpha$).
翻译:本文提出一种创新的、由自然启发的美元-alpha$-公平混合编码(NI-$-alpha$-HP)技术,用于毫米波多用户大规模多投入多产出产出系统。与现有的HP文献不同,我们提议采用美元-alpha$-公平,以维持各种公平期望(例如,最高比率最大化、比例公平、最大公平等)。在通过缓慢时间变化的三角信息开发了类似RF光谱后,数字基带(BBB)预编码(BB)是通过从BB阶段看的低维度有效频道矩阵设计的。对于美元-公平性,我们用一套参数获得最佳的数字BBB预编码表达方式,优化这些参数是NP的难题。因此,我们通过五种自然激励智能算法,有效地优化了数字BBB前的参数参数。 数字基带(BB)显示,当SUM-leg-lection成为目标时,拟议的NI-$/alpha-he 技术将大大提升了美元之间的公平性,从而将缩小了AS-rxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx