We study the iterative algorithm proposed by S. Armstrong, A. Hannukainen, T. Kuusi, J.-C. Mourrat to solve elliptic equations in divergence form with stochastic stationary coefficients. Such equations display rapidly oscillating coefficients and thus usually require very expensive numerical calculations, while this iterative method is comparatively easy to compute. In this article, we strengthen the estimate for the contraction factor achieved by one iteration of the algorithm. We obtain an estimate that holds uniformly over the initial function in the iteration, and which grows only logarithmically with the size of the domain.
翻译:我们研究S.阿姆斯特朗、A.汉努卡宁、T.库西、J.-C.莫拉特提出的迭接算法,用随机固定系数以差异形式解析椭圆方程式,这些方程式显示快速振动系数,因此通常需要非常昂贵的数字计算,而这种迭接法比较容易计算。在本篇文章中,我们加强了对一种迭接算法所实现的收缩系数的估计。我们获得的估计数与迭接法最初的功能一致,并且仅与域的大小成逻辑增长。