Surface hopping algorithms, as an important class of quantum dynamics simulation algorithms for non-adiabatic dynamics, are typically performed in the adiabatic representation, which can break down in the presence of ill-defined adiabatic potential energy surfaces (PESs) and adiabatic coupling term. Another issue of surface hopping algorithms is the difficulty in capturing the correct scaling of the transition rate in the Marcus (weak-coupling/non-adiabatic) regime. Though the first issue can be circumvented by exploiting the diabatic representation, diabatic surface hopping algorithms usually lack justification on the theoretical level. We consider the diabatic surface hopping algorithm proposed in [Fang, Lu. Multiscale Model. Simul. 16:4, 1603-1622, 2018] and provide the asymptotic analysis of the transition rate in the Marcus regime that justifies the correct scaling for the spin-boson model. We propose two conditions that guarantee the correctness for general potentials. In the opposite (strong-coupling/adiabatic) regime, we derive the asymptotic behavior of the algorithm that interestingly matches a type of mean-field description. The techniques used here may shed light on the analysis for other diabatic-based algorithms.
翻译:表面购物算法是非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非非性动力学模拟算法的一个重要类别,通常在非非异性代表制中进行。表面购物算法的另一个问题是难以在马库斯(弱相对/非非非非非非非非非非非非非非非非非非非非非非非非非非非性)制度内正确衡量过渡率的正确比例。尽管第一个问题可以通过利用异性代表制来规避。我们考虑[Fang, Lu. 多重模型. Simul. 16: 4, 1603-1622, 2018] 中提议的异性表面潜在能源表面算法,并提供对马库斯制度过渡率的无症状分析,以证明对脊椎模型模型进行正确比例定。我们提出两个条件,保证一般潜力的正确性。在理论一级通常缺乏正当理由。我们在这里分析以非性(双对非非非性表面表面地)制度中,我们从非性地分析所使用的算法分析中得出了亚法分析方法。