Comparative effectiveness studies using electronic health records (EHR) consider data from patients who could ``enter'' the study cohort at any point during an interval that spans many years in calendar time. Unlike treatments in tightly controlled trials, real-world treatments can evolve over calendar time, especially if comparators include standard of care, or procedures where techniques may improve. Efforts to assess whether treatment efficacy itself is changing are complicated by changing patient populations, with potential covariate shift in key effect modifiers. In this work, we propose a statistical framework to estimate calendar-time specific average treatment effects and describe both how and why effects vary across treatment initiation time in EHR-based studies. Our approach projects doubly robust, time-specific treatment effect estimates onto candidate marginal structural models and uses a model selection procedure to best describe how effects vary by treatment initiation time. We further introduce a novel summary metric, based on standardization analysis, to quantify the role of covariate shift in explaining observed effect changes and disentangle changes in treatment effects from changes in the patient population receiving treatment. Extensive simulations using EHR data from Kaiser Permanente are used to validate the utility of the framework, which we apply to study changes in relative weight loss following two bariatric surgical interventions versus no surgery among patients with severe obesity between 2005-2011.
翻译:利用电子健康记录(EHR)开展的比较效果研究,其数据来源于可在跨越数年的日历时间区间内任意时间点"进入"研究队列的患者。与严格受控试验中的治疗不同,现实世界中的治疗可能随日历时间演变,特别是在比较对象包含标准治疗方案或技术可能改进的医疗程序时。由于患者群体的动态变化及关键效应修饰因子可能存在协变量偏移,评估治疗效果本身是否发生变化的尝试变得尤为复杂。本研究提出一个统计框架,用于估计特定日历时间的平均处理效应,并系统阐释基于EHR的研究中治疗效应如何及为何随治疗起始时间变化。该方法将双重稳健的时变处理效应估计量映射到候选边际结构模型,通过模型选择程序最优描述治疗效应随起始时间的变化规律。我们进一步基于标准化分析提出新型汇总度量指标,用以量化协变量偏移在解释观测效应变化中的作用,从而区分治疗效果变化与接受治疗的患者群体变化。通过使用凯撒医疗集团的EHR数据进行大规模模拟研究,验证了该框架的实用性,并将其应用于分析2005-2011年间重度肥胖患者接受两种减重手术干预相较于未手术者的相对减重效果变化。