Let $E$ be a separable Banach space and let $X, X_1,\dots, X_n, \dots$ be i.i.d. Gaussian random variables taking values in $E$ with mean zero and unknown covariance operator $\Sigma: E^{\ast}\mapsto E.$ The complexity of estimation of $\Sigma$ based on observations $X_1,\dots, X_n$ is naturally characterized by the so called effective rank of $\Sigma:$ ${\bf r}(\Sigma):= \frac{{\mathbb E}_{\Sigma}\|X\|^2}{\|\Sigma\|},$ where $\|\Sigma\|$ is the operator norm of $\Sigma.$ Given a smooth real valued functional $f$ defined on the space $L(E^{\ast},E)$ of symmetric linear operators from $E^{\ast}$ into $E$ (equipped with the operator norm), our goal is to study the problem of estimation of $f(\Sigma)$ based on $X_1,\dots, X_n.$ The estimators of $f(\Sigma)$ based on jackknife type bias reduction are considered and the dependence of their Orlicz norm error rates on effective rank ${\bf r}(\Sigma),$ the sample size $n$ and the degree of H\"older smoothness $s$ of functional $f$ are studied. In particular, it is shown that, if ${\bf r}(\Sigma)\lesssim n^{\alpha}$ for some $\alpha\in (0,1)$ and $s\geq \frac{1}{1-\alpha},$ then the classical $\sqrt{n}$-rate is attainable and, if $s> \frac{1}{1-\alpha},$ then asymptotic normality and asymptotic efficiency of the resulting estimators hold. Previously, the results of this type (for different estimators) were obtained only in the case of finite dimensional Euclidean space $E={\mathbb R}^d$ and for covariance operators $\Sigma$ whose spectrum is bounded away from zero (in which case, ${\bf r}(\Sigma)\asymp d$).


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月25日
Arxiv
0+阅读 · 2023年10月24日
Arxiv
0+阅读 · 2023年10月20日
Arxiv
0+阅读 · 2023年10月20日
Arxiv
0+阅读 · 2023年10月20日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员