Agentic AI represents a transformative shift in artificial intelligence, but its rapid advancement has led to a fragmented understanding, often conflating modern neural systems with outdated symbolic models -- a practice known as conceptual retrofitting. This survey cuts through this confusion by introducing a novel dual-paradigm framework that categorizes agentic systems into two distinct lineages: the Symbolic/Classical (relying on algorithmic planning and persistent state) and the Neural/Generative (leveraging stochastic generation and prompt-driven orchestration). Through a systematic PRISMA-based review of 90 studies (2018--2025), we provide a comprehensive analysis structured around this framework across three dimensions: (1) the theoretical foundations and architectural principles defining each paradigm; (2) domain-specific implementations in healthcare, finance, and robotics, demonstrating how application constraints dictate paradigm selection; and (3) paradigm-specific ethical and governance challenges, revealing divergent risks and mitigation strategies. Our analysis reveals that the choice of paradigm is strategic: symbolic systems dominate safety-critical domains (e.g., healthcare), while neural systems prevail in adaptive, data-rich environments (e.g., finance). Furthermore, we identify critical research gaps, including a significant deficit in governance models for symbolic systems and a pressing need for hybrid neuro-symbolic architectures. The findings culminate in a strategic roadmap arguing that the future of Agentic AI lies not in the dominance of one paradigm, but in their intentional integration to create systems that are both adaptable and reliable. This work provides the essential conceptual toolkit to guide future research, development, and policy toward robust and trustworthy hybrid intelligent systems.
翻译:能动性人工智能(Agentic AI)代表了人工智能领域的一次变革性转向,但其快速发展导致了理解上的碎片化,常常将现代神经智能系统与过时的符号模型混为一谈——这种实践被称为概念性回溯适配。本综述通过引入一种新颖的双范式框架来厘清这一混淆,该框架将能动性系统划分为两个不同的谱系:符号/经典范式(依赖算法规划与持久状态)与神经/生成范式(利用随机生成与提示驱动的编排)。通过对90项研究(2018–2025年)进行基于PRISMA方法的系统性回顾,我们围绕该框架在三个维度上提供了全面的分析:(1)定义每种范式的理论基础与架构原则;(2)在医疗健康、金融和机器人等领域的特定应用实现,展示了应用约束如何决定范式的选择;(3)范式特有的伦理与治理挑战,揭示了不同的风险与缓解策略。我们的分析表明,范式的选择具有战略性:符号系统在安全关键领域(如医疗健康)占主导地位,而神经系统则在适应性强、数据丰富的环境(如金融)中占据优势。此外,我们指出了关键的研究空白,包括符号系统治理模型的显著缺失,以及对混合神经-符号架构的迫切需求。研究结果最终汇集成一个战略性路线图,论证了能动性人工智能的未来不在于单一范式的统治,而在于通过有意识的整合来创建既具适应性又可靠的系统。本工作提供了必要的概念工具包,以指导未来研究、开发与政策朝着构建稳健且可信赖的混合智能系统的方向迈进。