Development of new machine learning models is typically done on manually curated data sets, making them unsuitable for evaluating the models' performance during operations, where the evaluation needs to be performed automatically on incoming streams of new data. Unfortunately, pure reliance on a fully automatic pipeline for monitoring model performance makes it difficult to understand if any observed performance issues are due to model performance, pipeline issues, emerging data distribution biases, or some combination of the above. With this in mind, we developed a web-based visualization system that allows the users to quickly gather headline performance numbers while maintaining confidence that the underlying data pipeline is functioning properly. It also enables the users to immediately observe the root cause of an issue when something goes wrong. We introduce a novel way to analyze performance under data issues using a data coverage equalizer. We describe the various modifications and additional plots, filters, and drill-downs that we added on top of the standard evaluation metrics typically tracked in machine learning (ML) applications, and walk through some real world examples that proved valuable for introspecting our models.
翻译:开发新的机器学习模型通常是在手工整理的数据集上进行,使得这些模型不适合在操作期间对模型的性能进行评估,因为新数据流需要自动进行评估。 不幸的是,纯粹依靠完全自动的管道来监测模型性能,因此很难理解观察到的性能问题是否是由于模型性能、管道问题、新出现的数据分配偏差或上述因素的某些组合造成的。考虑到这一点,我们开发了一个基于网络的可视化系统,使用户能够快速收集头条性能数字,同时保持对基础数据管道正常运行的信心。它也使用户能够在出现问题时立即观察问题的根源。我们引入了一种新颖的方法,利用数据覆盖平衡器分析数据问题下的性能。我们描述了在机械学习应用中通常跟踪的标准评价指标之上所增加的各种修改和额外图案、过滤器和钻孔。我们用在机器学习(ML)应用中通常跟踪到的标准评价标准指标之上,并浏览一些被证明对探索模型很有价值的真实世界实例。