Applications of force control and motion planning often rely on an inverse dynamics model to represent the high-dimensional dynamic behavior of robots during motion. The widespread occurrence of low-velocity, small-scale, locally isotropic motion (LIMO) typically complicates the identification of appropriate models due to the exaggeration of dynamic effects and sensory perturbation caused by complex friction and phenomena of hysteresis, e.g., pertaining to joint elasticity. We propose a hybrid model learning base architectures combining a rigid body dynamics model identified by parametric regression and time-series neural network architectures based on multilayer-perceptron, LSTM, and Transformer topologies. Further, we introduce novel joint-wise rotational history encoding, reinforcing temporal information to effectively model dynamic hysteresis. The models are evaluated on a KUKA iiwa 14 during algorithmically generated locally isotropic movements. Together with the rotational encoding, the proposed architectures outperform state-of-the-art baselines by a magnitude of 10$^3$ yielding an RMSE of 0.14 Nm. Leveraging the hybrid structure and time-series encoding capabilities, our approach allows for accurate torque estimation, indicating its applicability in critically force-sensitive applications during motion sequences exceeding the capacity of conventional inverse dynamics models while retaining trainability in face of scarce data and explainability due to the employed physics model prior.
翻译:应用武力控制和运动规划往往依赖反向动态模型,以代表运动期间机器人的高维动态行为。广泛出现的低速、小规模、局部异向运动(LIMO)通常使确定适当模型的工作复杂化,因为复杂的摩擦和歇斯底里现象(例如,与联合弹性有关)导致的动态效应和感官扰动现象夸大了,例如,与联合弹性有关的复杂摩擦和歇斯底里现象造成的动态效应和感官扰动现象。我们提议混合示范学习基础结构,结合由参数回归和时序神经网络结构确定的僵硬身体动态模型。根据多层-视线、LSTM和变异式结构,广泛出现低速度、小规模、局部的当地异位运动运动运动运动(LIMO),加强时间信息以便有效地模拟动态歇斯底里。这些模型在以逻辑方式生成的本地异地运动运动运动运动运动运动运动期间,用KUKA iiwa 14进行评估。与轮换编码一起,拟议的结构在成熟的模型下,以10 3美元的规模超越了现状基线,在多层次上产生一个IMRES-C-C-可变性方法,在前的精确的可变性结构中,在精确的可变式结构中显示其精确性结构中,在前的可变式结构上显示其精确性变式的可变式结构上,在精确性变式结构结构上显示其精确性能性能性能中,在精确性能性结构上显示其精确性能应用能力,在精确性能性能性能性能性能。