Distributing quantum entanglements over long distances is essential for the realization of a global scale quantum Internet. Most of the prior work and proposals assume an on-demand distribution of entanglements which may result in significant network resource under-utilization. In this work, we introduce Quantum Overlay Networks (QONs) for efficient entanglement distribution in quantum networks. When the demand to create end-to-end user entanglements is low, QONs can generate and store maximally entangled Bell pairs (EPR pairs) at specific overlay storage nodes of the network. Later, during peak demands, requests can be served by performing entanglement swaps either over a direct path from the network or over a path using the storage nodes. We solve the link entanglement and storage resource allocation problem in such a QON using a centralized optimization framework. We evaluate the performance of our proposed QON architecture over a wide number of network topologies under various settings using extensive simulation experiments. Our results demonstrate that QONs fare well by a factor of 40% with respect to meeting surge and changing demands compared to traditional non-overlay proposals. QONs also show significant improvement in terms of average entanglement request service delay over non-overlay approaches.
翻译:长距离分散量子纠缠对于实现全球规模量子互联网至关重要。 大多数先前的工作和提案都假定按需分配可能会导致大量网络资源利用不足的纠缠。 在这项工作中,我们引入量子网络中高效纠缠分布的量子重叠网络(QONs) 。 当创建端到端用户纠缠的需求较低时, QONs 可以在网络特定的重叠存储节点生成并存储最紧密缠绕的贝尔对( ERPR对) 。 后来, 在需求高峰期, 请求可以通过进行纠缠互换来得到满足, 或者在网络的直接路径上或者在使用存储节点的路径上进行。 我们使用集中优化框架解决在量子网络中高效的连接缠绕和存储资源分配问题。 我们利用广泛的模拟实验来评估我们提议的QON结构在各种环境下对大量网络顶端结构的性能。 我们的结果显示, QON 相当适合40% 的因素是满足平均要求的升级要求的40% 。