Multi-gene panel testing allows many cancer susceptibility genes to be tested quickly at a lower cost making such testing accessible to a broader population. Thus, more patients carrying pathogenic germline mutations in various cancer-susceptibility genes are being identified. This creates a great opportunity, as well as an urgent need, to counsel these patients about appropriate risk reducing management strategies. Counseling hinges on accurate estimates of age-specific risks of developing various cancers associated with mutations in a specific gene, i.e., penetrance estimation. We propose a meta-analysis approach based on a Bayesian hierarchical random-effects model to obtain penetrance estimates by integrating studies reporting different types of risk measures (e.g., penetrance, relative risk, odds ratio) while accounting for the associated uncertainties. After estimating posterior distributions of the parameters via a Markov chain Monte Carlo algorithm, we estimate penetrance and credible intervals. We investigate the proposed method and compare with an existing approach via simulations based on studies reporting risks for two moderate-risk breast cancer susceptibility genes, ATM and PALB2. Our proposed method is far superior in terms of coverage probability of credible intervals and mean square error of estimates. Finally, we apply our method to estimate the penetrance of breast cancer among carriers of pathogenic mutations in the ATM gene.
翻译:多基因面板检测使得许多癌症易感基因可以更快地、低成本进行检测,从而使得这种检测面向更广泛的人群。因此,越来越多的患者被鉴定为携带各种与癌症易感基因相关的致病性生殖系列突变。这创造了一个很好的机会,也迫切需要为这些患者提供关于合适的风险降低管理策略的建议。咨询的关键在于准确的估计与特定基因突变相关的各种癌症的年龄特异性风险,即穿透率估计。我们提出了一种基于贝叶斯层次随机效应模型的元分析方法,通过整合报告不同类型风险度量(例如,穿透率、相对风险、几率比等)的研究来获得穿透率估计值,同时考虑相关的不确定性。通过马尔科夫蒙特卡罗算法估计参数的后验分布之后,我们估计穿透率和可信区间。我们通过基于ATM和PALB2两种中等风险乳腺癌易感性基因风险的研究的模拟来研究所提出的方法,并与现有方法进行比较。我们的方法在可信区间的覆盖率和估计的均方误差方面均优于现有方法。最后,我们应用我们的方法估计ATM基因突变携带者的乳腺癌穿透率。