Conversational systems or chatbots are an example of AI-Infused Applications (AIIA). Chatbots are especially important as they are often the first interaction of clients with a business and are the entry point of a business into the AI (Artificial Intelligence) world. The quality of the chatbot is, therefore, key. However, as is the case in general with AIIAs, it is especially challenging to assess and control the quality of chatbot systems. Beyond the inherent statistical nature of these systems, where occasional failure is acceptable, we identify two major challenges. The first is to release an initial system that is of sufficient quality such that humans will interact with it. The second is to maintain the quality, enhance its capabilities, improve it and make necessary adjustments based on changing user requests or drift. These challenges exist because it is impossible to predict the real distribution of user requests and the natural language they will use to express these requests. Moreover, any empirical distribution of requests is likely to change over time. This may be due to periodicity, changing usage, and drift of topics. We provide a methodology and set of technologies to address these challenges and to provide automated assistance through a human-in-the-loop approach. We notice that it is crucial to connect between the different phases in the lifecycle of the chatbot development and to make sure it provides its expected business value. For example, that it frees human agents to deal with tasks other than answering human users. Our methodology and technologies apply during chatbot training in the pre-production phase, through to chatbot usage in the field in the post-production phase. They implement the `test first' paradigm by assisting in agile design, and support continuous integration through actionable insights.
翻译:聊天室系统或聊天室是AI-Infused Applications(AIIA)的一个例子。 聊天室具有特别重要的意义,因为它们往往是企业客户与企业的第一次互动,是企业进入AI(人工智能)世界的切入点。 因此,聊天室的质量是关键。 然而,正如对AIDAA来说,评估和控制聊天室系统的质量尤其困难。除了这些系统的内在统计性质外,偶尔的聊天不为人所接受,我们发现两大挑战。首先,公布一个具有足够质量的初始系统,使人类与企业进行互动。第二,保持质量,加强其能力,改进它,并根据用户要求的变化或漂移情况作出必要的调整。这些挑战存在,因为无法预测用户请求的真实分布情况和它们用来表达这些请求的自然语言。此外,任何请求的经验分布都有可能随着时间的推移而发生变化。这可能是由于周期性、改变使用和议题的漂移。我们为在自由用户中应用了一种方法并设置一套技术来应对这些挑战,从而在人类的周期性阶段实施后期操作方法。 这些挑战,在人类生活前的自动设计过程中,我们通过不同的手法提供了一种手法。 在人类的整合中,我们通过不同的手法中,我们通过不同的手法的操作中提供了一种手法的操作, 提供了一种手法的预的操作, 。在人类的操作中提供了一种手法的预的操作,在人类的操作,通过不同的操作,通过不同的操作,通过不同的操作,在人类的操作中提供了一种手法的操作,通过不同的操作,通过不同的操作,通过不同的操作。 提供了一种过程,在人类的预的操作式的操作,在人类的操作,通过不同的操作,通过不同的操作过程的操作过程的操作,通过不同的操作中提供我们提供了一种过程的操作过程的操作,通过不同的操作,在人类的转换。在人类的预的操作的操作的操作的操作,通过不同的操作的操作的操作中提供过程提供。,在人类的操作,在人类的操作中的自动的操作的操作,通过不同的操作中提供过程的预的操作,通过不同的操作,通过不同的操作的操作的操作的操作的操作,通过不同的操作中提供中提供中提供过程的预提供我们的预的预的操作。