Conversational systems or chatbots are an example of AI-Infused Applications (AIIA). Chatbots are especially important as they are often the first interaction of clients with a business and are the entry point of a business into the AI (Artificial Intelligence) world. The quality of the chatbot is, therefore, key. However, as is the case in general with AIIAs, it is especially challenging to assess and control the quality of chatbot systems. Beyond the inherent statistical nature of these systems, where occasional failure is acceptable, we identify two major challenges. The first is to release an initial system that is of sufficient quality such that humans will interact with it. The second is to maintain the quality, enhance its capabilities, improve it and make necessary adjustments based on changing user requests or drift. These challenges exist because it is impossible to predict the real distribution of user requests and the natural language they will use to express these requests. Moreover, any empirical distribution of requests is likely to change over time. This may be due to periodicity, changing usage, and drift of topics. We provide a methodology and set of technologies to address these challenges and to provide automated assistance through a human-in-the-loop approach. We notice that it is crucial to connect between the different phases in the lifecycle of the chatbot development and to make sure it provides its expected business value. For example, that it frees human agents to deal with tasks other than answering human users. Our methodology and technologies apply during chatbot training in the pre-production phase, through to chatbot usage in the field in the post-production phase. They implement the `test first' paradigm by assisting in agile design, and support continuous integration through actionable insights.


翻译:聊天室系统或聊天室是AI-Infused Applications(AIIA)的一个例子。 聊天室具有特别重要的意义,因为它们往往是企业客户与企业的第一次互动,是企业进入AI(人工智能)世界的切入点。 因此,聊天室的质量是关键。 然而,正如对AIDAA来说,评估和控制聊天室系统的质量尤其困难。除了这些系统的内在统计性质外,偶尔的聊天不为人所接受,我们发现两大挑战。首先,公布一个具有足够质量的初始系统,使人类与企业进行互动。第二,保持质量,加强其能力,改进它,并根据用户要求的变化或漂移情况作出必要的调整。这些挑战存在,因为无法预测用户请求的真实分布情况和它们用来表达这些请求的自然语言。此外,任何请求的经验分布都有可能随着时间的推移而发生变化。这可能是由于周期性、改变使用和议题的漂移。我们为在自由用户中应用了一种方法并设置一套技术来应对这些挑战,从而在人类的周期性阶段实施后期操作方法。 这些挑战,在人类生活前的自动设计过程中,我们通过不同的手法提供了一种手法。 在人类的整合中,我们通过不同的手法中,我们通过不同的手法的操作中提供了一种手法的操作, 提供了一种手法的预的操作, 。在人类的操作中提供了一种手法的预的操作,在人类的操作,通过不同的操作,通过不同的操作,通过不同的操作,在人类的操作中提供了一种手法的操作,通过不同的操作,通过不同的操作,通过不同的操作。 提供了一种过程,在人类的预的操作式的操作,在人类的操作,通过不同的操作,通过不同的操作过程的操作过程的操作,通过不同的操作中提供我们提供了一种过程的操作过程的操作,通过不同的操作,在人类的转换。在人类的预的操作的操作的操作的操作,通过不同的操作的操作的操作中提供过程提供。,在人类的操作,在人类的操作中的自动的操作的操作,通过不同的操作中提供过程的预的操作,通过不同的操作,通过不同的操作的操作的操作的操作的操作,通过不同的操作中提供中提供中提供过程的预提供我们的预的预的操作。

0
下载
关闭预览

相关内容

Chatbot,聊天机器人。 chatbot是场交互革命,也是一个多技术融合的平台。上图给出了构建一个chatbot需要具备的组件,简单地说chatbot = NLU(Natural Language Understanding) + NLG(Natural Language Generation)。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
26+阅读 · 2018年9月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员