Automatic pseudo-labeling is a powerful tool to tap into large amounts of sequential unlabeled data. It is especially appealing in safety-critical applications of autonomous driving where performance requirements are extreme, datasets large, and manual labeling is very challenging. We propose to leverage the sequentiality of the captures to boost the pseudo-labeling technique in a teacher-student setup via training multiple teachers, each with access to different temporal information. This set of teachers, dubbed Concordance, provides higher quality pseudo-labels for the student training than standard methods. The output of multiple teachers is combined via a novel pseudo-label confidence-guided criterion. Our experimental evaluation focuses on the 3D point cloud domain in urban driving scenarios. We show the performance of our method applied to multiple model architectures with tasks of 3D semantic segmentation and 3D object detection on two benchmark datasets. Our method, using only 20% of manual labels, outperforms some of the fully supervised methods. Special performance boost is achieved for classes rarely appearing in the training data, e.g., bicycles and pedestrians. The implementation of our approach is publicly available at https://github.com/ctu-vras/T-Concord3D.
翻译:自动假贴标签是一种强大的工具, 用来输入大量连续无标签数据。 它在自动驾驶的安全关键应用中特别具有吸引力, 其性能要求非常极端, 数据集庞大, 手工标签非常具有挑战性 。 我们提议通过培训多位教师, 每位教师都可获得不同的时间信息, 从而在教师- 学生设置中利用捕捉的顺序技术来提升假贴标签技术。 这组教师, 被称为Concoordance, 为学生培训提供了比标准方法更高质量的假贴标签。 多位教师的输出通过一个新的假冒标签信任指导标准进行组合。 我们的实验性评估侧重于城市驾驶情景中的3D点云域。 我们展示了我们应用于多模型结构的方法的性能,在两个基准数据集中的任务为 3D 语义分解和 3D 对象检测。 我们的方法, 仅使用20% 的手贴标签, 超越了完全监督的一些方法。 对于培训数据中很少出现的课程, 比如, 自行车和行人。 我们的方法的实施方式在 http://Cons/Contvrence。