The shortest secure path (routing) problem in communication networks has to deal with multiple attack layers e.g., man-in-the-middle, eavesdropping, packet injection, packet insertion, etc. Consider different probabilities for each such attack over an edge, probabilities that can differ across edges. Furthermore, usage of a single shortest path (for routing) implies possible traffic bottleneck, which should be avoided if possible, which we term pathneck security avoidance. Finding all Pareto-optimal solutions for the multi-criteria single-source single-destination shortest secure path problem with non-negative edge lengths might yield a solution with an exponential number of paths. In the first part of this paper, we study specific settings of the multi-criteria shortest secure path problem, which are based on prioritized multi-criteria and on $k$-shortest secure paths. In the second part, we show a polynomial-time algorithm that, given an undirected graph $G$ and a pair of vertices $(s,t)$, finds prioritized multi-criteria $2$-disjoint (vertex/edge) shortest secure paths between $s$ and $t$. In the third part of the paper, we introduce the $k$-disjoint all-criteria-shortest secure paths problem, which is solved in time $O(\min(k|E|, |E|^{3/2}))$.


翻译:通信网络中最短的安全路径(路由)问题必须处理多个攻击层,例如,中途人、窃听者、打字、插入包等。 考虑在边缘上对每次攻击的不同概率,可能跨边缘。 此外,使用一个最短路径(路由)意味着可能避免交通瓶颈,如果可能的话,应当避免这种瓶颈。 找到多标准单源单一源单一目的地最安全路径的所有最佳解决方案, 找到非负偏差长度的所有Pareto- 最佳解决方案, 可能会产生一个路径数量惊人的解决方案。 在本文的第一部分, 我们研究多标准最短路径问题的具体环境, 以优先的多标准为基础, 以及 $k$- 最差的安全路径。 在第二部分, 我们展示了一个超时算算算算法, 鉴于一个非方向的G$- G$ 和一对双峰安全路径 $( 美元, t$- 美元), 找到最优先的多标准/ 标准- 方标准- 问题。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【斯坦福大学Chelsea Finn-NeurIPS 2019】贝叶斯元学习
专知会员服务
37+阅读 · 2019年12月17日
已删除
将门创投
5+阅读 · 2019年9月10日
PLANET+SAC代码实现和解读
CreateAMind
3+阅读 · 2019年7月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月28日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【斯坦福大学Chelsea Finn-NeurIPS 2019】贝叶斯元学习
专知会员服务
37+阅读 · 2019年12月17日
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
PLANET+SAC代码实现和解读
CreateAMind
3+阅读 · 2019年7月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员