We introduce the Salesforce CausalAI Library, an open-source library for causal analysis using observational data. It supports causal discovery and causal inference for tabular and time series data, of both discrete and continuous types. This library includes algorithms that handle linear and non-linear causal relationships between variables, and uses multi-processing for speed-up. We also include a data generator capable of generating synthetic data with specified structural equation model for both the aforementioned data formats and types, that helps users control the ground-truth causal process while investigating various algorithms. Finally, we provide a user interface (UI) that allows users to perform causal analysis on data without coding. The goal of this library is to provide a fast and flexible solution for a variety of problems in the domain of causality. This technical report describes the Salesforce CausalAI API along with its capabilities, the implementations of the supported algorithms, and experiments demonstrating their performance and speed. Our library is available at \url{https://github.com/salesforce/causalai}.
翻译:我们引入了Selforce CausalAI图书馆,这是一个利用观察数据进行因果关系分析的开放源码图书馆,它支持独立和连续类型的表格和时间序列数据的因果发现和因果推断,该图书馆包括处理变量之间线性和非线性因果关系的算法,并使用多处理来加快速度。我们还包括一个数据生成器,能够生成具有上述数据格式和类型的特定结构方程式的合成数据,帮助用户在调查各种算法时控制地面真因果过程。最后,我们提供了一个用户界面(UI),使用户能够对数据进行因果关系分析,而无需编码。该图书馆的目标是为因果关系领域的各种问题提供快速和灵活的解决办法。本技术报告描述了Selforce CausalAI API及其能力、所支持的算法的实施以及测试其性能和速度。我们的图书馆可在以下网站查阅:https://github.com/salesforce/causalai}。