In this work we propose the use of quantile regression and dilated recurrent neural networks with temporal scaling (MQ-DRNN-s) and apply it to the inventory management task. This model showed a better performance of up to 3.2\% over a statistical benchmark (the quantile autoregressive model with exogenous variables, QAR-X), being better than the MQ-DRNN without temporal scaling by 6\%. The above on a set of 10,000 time series of sales of El Globo over a 53-week horizon using rolling windows of 7-day ahead each week.
翻译:在这项工作中,我们提议使用四分位回归和扩展具有时间尺度的重复神经网络(MQ-DRNN-s)并将其应用于库存管理任务。这一模型显示,比统计基准(带有外源变量的四分位自动递减模型QAR-X)的绩效要好,比MQ-DRNN好,而没有时间缩放为6 ⁇ 。以上是利用每周7天的滚动窗口在53周内出售El Globo的10 000个时间序列。