We present an architecture for ad hoc teamwork, which refers to collaboration in a team of agents without prior coordination. State of the art methods for this problem often include a data-driven component that uses a long history of prior observations to model the behaviour of other agents (or agent types) and to determine the ad hoc agent's behaviour. In many practical domains, it is challenging to find large training datasets, and necessary to understand and incrementally extend the existing models to account for changes in team composition or domain attributes. Our architecture combines the principles of knowledge-based and data-driven reasoning and learning. Specifically, we enable an ad hoc agent to perform non-monotonic logical reasoning with prior commonsense domain knowledge and incrementally-updated simple predictive models of other agents' behaviour. We use the benchmark simulated multi-agent collaboration domain Fort Attack to demonstrate that our architecture supports adaptation to unforeseen changes, incremental learning and revision of models of other agents' behaviour from limited samples, transparency in the ad hoc agent's decision making, and better performance than a data-driven baseline.


翻译:我们提出了一个特设团队架构,它是指在没有事先协调的情况下在一组代理人员中开展协作。这一问题的先进方法通常包括一个数据驱动的构件,它使用长期的以往观测历史来模拟其他代理人员(或代理类型)的行为并确定特设代理人员的行为。在许多实际领域,我们很难找到大型培训数据集,并且有必要理解和逐步扩展现有模型,以考虑到团队组成或域属性的变化。我们的构件结合了基于知识和以数据驱动的推理和学习原则。具体地说,我们使特设代理人员能够以先前的常识领域知识和渐进式的简单预测模型来进行非流动逻辑推理。我们使用基准模拟多代理人合作领域Fort攻击来证明我们的架构支持适应意外变化、逐步学习和从有限的样本中修订其他代理人员行为的模型、特设代理人员决策的透明度以及比数据驱动基线更好的性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月2日
Arxiv
0+阅读 · 2022年11月30日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
13+阅读 · 2021年5月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员