Current open-domain question answering systems often follow a Retriever-Reader architecture, where the retriever first retrieves relevant passages and the reader then reads the retrieved passages to form an answer. In this paper, we propose a simple and effective passage reranking method, named Reader-guIDEd Reranker (RIDER), which does not involve training and reranks the retrieved passages solely based on the top predictions of the reader before reranking. We show that RIDER, despite its simplicity, achieves 10 to 20 absolute gains in top-1 retrieval accuracy and 1 to 4 Exact Match (EM) gains without refining the retriever or reader. In addition, RIDER, without any training, outperforms state-of-the-art transformer-based supervised rerankers. Remarkably, RIDER achieves 48.3 EM on the Natural Questions dataset and 66.4 EM on the TriviaQA dataset when only 1,024 tokens (7.8 passages on average) are used as the reader input after passage reranking.
翻译:当前的开放域解答系统通常遵循一个检索者首先检索到相关段落,读者然后读取检索到的段落以形成一个答案。在本文中,我们建议一种简单而有效的通道重新排序方法,名为Reder-guided Reranker(RIDER),它不涉及仅仅根据读者在重新排序前的顶级预测进行培训和重新排序检索到的段落。我们表明,尽管RIDER简单,但它在顶级-1号检索精确度和1至4号Exact Match(EM)增益方面实现了10至20项绝对增益,而没有改进检索者或阅读者。此外,RIDER,没有经过任何培训,就超越了以高级变压器为基础的监管变压器。值得注意的是,RIDER在自然问题数据集上实现了48.3 EM,在TriviaQA数据集上实现了66.4 EM,只有1 024个标志(平均7.8个段落)在通过重排位后作为读者输入。