Subspace identification methods (SIMs) have proven to be very useful and numerically robust for building state-space models. While most SIMs are consistent, few if any can achieve the efficiency of the maximum likelihood estimate (MLE). Conversely, the prediction error method (PEM) with a quadratic criteria is equivalent to MLE, but it comes with non-convex optimization problems and requires good initialization points. This contribution proposes a weighted null space fitting (WNSF) approach for estimating state-space models, combining some key advantages of the two aforementioned mainstream approaches. It starts with a least-squares estimate of a high-order ARX model, and then a multi-step least-squares procedure reduces the model to a state-space model on canoncial form. It is demonstrated through statistical analysis that when a canonical parameterization is admissible, the proposed method is consistent and asymptotically efficient, thereby making progress on the long-standing open problem about the existence of an asymptotically efficient SIM. Numerical and practical examples are provided to illustrate that the proposed method performs favorable in comparison with SIMs.
翻译:子空间辨识方法(SIMs)已被证明在构建状态空间模型方面非常有用且数值稳健。虽然大多数SIMs具有一致性,但几乎没有方法能够达到最大似然估计(MLE)的效率。相反,采用二次准则的预测误差法(PEM)等价于MLE,但其伴随非凸优化问题且需要良好的初始点。本文提出一种用于估计状态空间模型的加权零空间拟合(WNSF)方法,结合了上述两种主流方法的关键优势。该方法首先对高阶ARX模型进行最小二乘估计,随后通过多步最小二乘过程将模型约简为规范形式的状态空间模型。统计分析表明,当规范参数化可采纳时,所提方法具有一致性和渐近有效性,从而在关于渐近有效SIM是否存在的长期开放问题上取得进展。数值与实例分析表明,所提方法相较于SIMs具有更优的性能。