Subspace identification methods (SIMs) have proven to be very useful and numerically robust for building state-space models. While most SIMs are consistent, few if any can achieve the efficiency of the maximum likelihood estimate (MLE). Conversely, the prediction error method (PEM) with a quadratic criteria is equivalent to MLE, but it comes with non-convex optimization problems and requires good initialization points. This contribution proposes a weighted null space fitting (WNSF) approach for estimating state-space models, combining some key advantages of the two aforementioned mainstream approaches. It starts with a least-squares estimate of a high-order ARX model, and then a multi-step least-squares procedure reduces the model to a state-space model on canoncial form. It is demonstrated through statistical analysis that when a canonical parameterization is admissible, the proposed method is consistent and asymptotically efficient, thereby making progress on the long-standing open problem about the existence of an asymptotically efficient SIM. Numerical and practical examples are provided to illustrate that the proposed method performs favorable in comparison with SIMs.


翻译:子空间辨识方法(SIMs)已被证明在构建状态空间模型方面非常有用且数值稳健。虽然大多数SIMs具有一致性,但几乎没有方法能够达到最大似然估计(MLE)的效率。相反,采用二次准则的预测误差法(PEM)等价于MLE,但其伴随非凸优化问题且需要良好的初始点。本文提出一种用于估计状态空间模型的加权零空间拟合(WNSF)方法,结合了上述两种主流方法的关键优势。该方法首先对高阶ARX模型进行最小二乘估计,随后通过多步最小二乘过程将模型约简为规范形式的状态空间模型。统计分析表明,当规范参数化可采纳时,所提方法具有一致性和渐近有效性,从而在关于渐近有效SIM是否存在的长期开放问题上取得进展。数值与实例分析表明,所提方法相较于SIMs具有更优的性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员